Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
ACS Nanosci Au ; 3(3): 192-203, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2305960

RESUMEN

The success of mRNA vaccines during the COVID-19 pandemic has greatly accelerated the development of mRNA therapy. mRNA is a negatively charged nucleic acid that serves as a template for protein synthesis in the ribosome. Despite its utility, the instability of mRNA requires suitable carriers for in vivo delivery. Lipid nanoparticles (LNPs) are employed to protect mRNA from degradation and enhance its intracellular delivery. To further optimize the therapeutic efficacy of mRNA, site-specific LNPs have been developed. Through local or systemic administration, these site-specific LNPs can accumulate in specific organs, tissues, or cells, allowing for the intracellular delivery of mRNA to specific cells and enabling the exertion of local or systemic therapeutic effects. This not only improves the efficiency of mRNA therapy but also reduces off-target adverse effects. In this review, we summarize recent site-specific mRNA delivery strategies, including different organ- or tissue-specific LNP after local injection, and organ-specific or cell-specific LNP after intravenous injection. We also provide an outlook on the prospects of mRNA therapy.

2.
Front Immunol ; 13: 926279, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2055016

RESUMEN

Dendritic cells (DCs) are professional antigen-presenting cells that can recognize, capture, and process antigens. Fusing molecules targeting DCs with antigens can effectively improve the efficiency with which antigens are recognized and captured by DCs. This targeting strategy can be used for vaccine development to effectively improve the efficiency of antigen recognition and capture by DCs. The targeting sequence of porcine cytotoxic T-lymphocyte associated protein 4 (CTLA4), which binds porcine DCs, was identified in this study. Recombinant Lactobacillus reuteri (L. reuteri) expressing CTLA4-6aa (LYPPPY) and CTLA4-87aa fused to the porcine epidemic diarrhea virus (PEDV) protective antigen core neutralizing epitope (COE) were used to evaluate the ability of the two targeting motifs to bind the B7 molecule on DCs. Our results demonstrate that CTLA4-6aa could bind porcine DCs, and recombinant Lactobacillus expressing the CTLA4-6aa captured by porcine DCs was more efficient than those expressing CTLA4-87aa. In addition, the expression of DC markers, toll-like receptors, and cytokines was significantly higher in the 6aa-COE/L. reuteri-stimulated porcine DCs compared to DCs treated with 87aa-COE/L. reuteri (p<0.01) and recombinant Lactobacillus expressing CTLA4-6aa enhanced the ability of porcine DCs to activate T-cell proliferation. Our analysis of the protein structure revealed that CTLA4-87aa contains intramolecular hydrogen bonds, which may have weakened the intermolecular force between the residues on porcine CTLA4 and that on B7. In conclusion, recombinant Lactobacillus expressing CTLA4-6aa were more efficiently captured by porcine DCs and had a stronger ability to promote DC maturation and enhance T-cell proliferation. The LYPPPY motif is the optimal sequence for binding to porcine DCs. Piglets immunized with recombinant Lactobacillus showed that recombinant Lactobacillus expressing CTLA4-6aa induced significant levels of anti-PEDV-specific IgG and IgA antibody responses. Our study may promote research on DC-targeting strategies to enhance the effectiveness of porcine vaccines.


Asunto(s)
Células Dendríticas , Animales , Antígenos B7 , Antígeno CTLA-4 , Citocinas , Epítopos , Inmunoglobulina A , Inmunoglobulina G , Lactobacillus , Péptidos , Porcinos
3.
Comput Struct Biotechnol J ; 20: 5193-5202, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2004002

RESUMEN

The coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health around the world. In-depth studies on the pathogenic mechanisms of SARS-CoV-2 is urgently necessary for pandemic prevention. However, most laboratory studies on SARS-CoV-2 have to be carried out in bio-safety level 3 (BSL-3) laboratories, greatly restricting the progress of relevant experiments. In this study, we used a bacterial artificial chromosome (BAC) method to assemble a SARS-CoV-2 replication and transcription system in Vero E6 cells without virion envelope formation, thus avoiding the risk of coronavirus exposure. Furthermore, an improved real-time quantitative reverse transcription PCR (RT-qPCR) approach was used to distinguish the replication of full-length replicon RNAs and transcription of subgenomic RNAs (sgRNAs). Using the SARS-CoV-2 replicon, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 facilitates the transcription of sgRNAs in the discontinuous synthesis process. Moreover, two high-frequency mutants of N protein, R203K and S194L, can obviously enhance the transcription level of the replicon, hinting that these mutations likely allow SARS-CoV-2 to spread and reproduce more quickly. In addition, remdesivir and chloroquine, two well-known drugs demonstrated to be effective against coronavirus in previous studies, also inhibited the transcription of our replicon, indicating the potential applications of this system in antiviral drug discovery. Overall, we developed a bio-safe and valuable replicon system of SARS-CoV-2 that is useful to study the mechanisms of viral RNA synthesis and has potential in novel antiviral drug screening.

4.
PLoS Genet ; 18(4): e1010137, 2022 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1789166

RESUMEN

Viral infections can alter host transcriptomes by manipulating host splicing machinery. Despite intensive transcriptomic studies on SARS-CoV-2, a systematic analysis of alternative splicing (AS) in severe COVID-19 patients remains largely elusive. Here we integrated proteomic and transcriptomic sequencing data to study AS changes in COVID-19 patients. We discovered that RNA splicing is among the major down-regulated proteomic signatures in COVID-19 patients. The transcriptome analysis showed that SARS-CoV-2 infection induces widespread dysregulation of transcript usage and expression, affecting blood coagulation, neutrophil activation, and cytokine production. Notably, CD74 and LRRFIP1 had increased skipping of an exon in COVID-19 patients that disrupts a functional domain, which correlated with reduced antiviral immunity. Furthermore, the dysregulation of transcripts was strongly correlated with clinical severity of COVID-19, and splice-variants may contribute to unexpected therapeutic activity. In summary, our data highlight that a better understanding of the AS landscape may aid in COVID-19 diagnosis and therapy.


Asunto(s)
COVID-19 , Empalme Alternativo/genética , COVID-19/genética , Prueba de COVID-19 , Humanos , Proteómica , SARS-CoV-2/genética , Transcriptoma
6.
Front Public Health ; 9: 741083, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1775896

RESUMEN

This study aimed to investigate the association between passive smoking and physical and psychological health in Chinese nurses. Participants of this cross-sectional study comprised 2,484 non-smoking nurses. Passive smoking and demographic information were assessed using a self-administered questionnaire. Physical, psychological, and overall health status of nurses were measured using the Cornell Medical Index (CMI) health questionnaire. Multivariate-adjusted odds ratio (OR) and 95% confidence interval (CI) for nurses' health were estimated by exposure to passive smoking using unconditional logistic regression models. A total of 1,219 nurses (49.07%) were exposed to passive smoking. Of these, 609 (24.52%), 160 (6.44%), and 587 (23.63%) nurses had poorer physical, mental, and overall health, respectively. After adjusting for other confounding factors, compared with the non-passive smoking group, passive smoking was associated with poor physical (OR = 1.51, 95% CI: 1.25-1.83), mental (OR = 1.48, 95% CI: 1.07-2.07), and overall (OR = 1.58, 95% CI: 1.30-1.93) health of nurses, respectively. We also carried out subgroup analyses stratified by age, department, and professional title, which showed that most findings supported the main results. This study demonstrated that exposure to passive smoking was a risk factor for overall decreased physical and mental health status among Chinese nurses.


Asunto(s)
Estado de Salud , Enfermeras y Enfermeros , Contaminación por Humo de Tabaco , China/epidemiología , Estudios Transversales , Humanos , Encuestas y Cuestionarios
7.
mBio ; 13(2): e0040222, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1765083

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection triggers cytokine-mediated inflammation, leading to a myriad of clinical presentations in COVID-19. The SARS-CoV-2 open reading frame 8 (ORF8) is a secreted and rapidly evolving glycoprotein. Patients infected with SARS-CoV-2 variants with ORF8 deleted are associated with mild disease outcomes, but the molecular mechanism behind this is unknown. Here, we report that SARS-CoV-2 ORF8 is a viral cytokine that is similar to but distinct from interleukin 17A (IL-17A) as it induces stronger and broader human IL-17 receptor (hIL-17R) signaling than IL-17A. ORF8 primarily targeted blood monocytes and induced the heterodimerization of hIL-17RA and hIL-17RC, triggering a robust inflammatory response. Transcriptome analysis revealed that besides its activation of the hIL-17R pathway, ORF8 upregulated gene expression for fibrosis signaling and coagulation dysregulation. A naturally occurring ORF8 L84S variant that was highly associated with mild COVID-19 showed reduced hIL-17RA binding and attenuated inflammatory responses. This study reveals how SARS-CoV-2 ORF8 by a viral mimicry of the IL-17 cytokine contributes to COVID-19 severe inflammation. IMPORTANCE Patients infected with SARS-CoV-2 variants lacking open reading frame 8 (ORF8) have been associated with milder infection and disease outcome, but the molecular mechanism behind how this viral accessory protein mediates disease pathogenesis is not yet known. In our study, we revealed that secreted ORF8 protein mimics host IL-17 to activate IL-17 receptors A and C (IL-17RA/C) and induces a significantly stronger inflammatory response than host IL-17A, providing molecular insights into the role of ORF8 in COVID-19 pathogenesis and serving as a potential therapeutic target.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inflamación/genética , Interleucina-17/genética , Sistemas de Lectura Abierta , SARS-CoV-2/genética , Proteínas Virales/metabolismo
8.
Cell Rep Med ; 2(11): 100453, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1521606

RESUMEN

While pregnancy increases the risk for severe COVID-19, the clinical and immunological implications of COVID-19 on maternal-fetal health remain unknown. Here, we present the clinical and immunological landscapes of 93 COVID-19 mothers and 45 of their SARS-CoV-2-exposed infants through comprehensive serum proteomics profiling for >1,400 cytokines of their peripheral and cord blood specimens. Prenatal SARS-CoV-2 infection triggers NF-κB-dependent proinflammatory immune activation. Pregnant women with severe COVID-19 show increased inflammation and unique IFN-λ antiviral signaling, with elevated levels of IFNL1 and IFNLR1. Furthermore, SARS-CoV-2 infection re-shapes maternal immunity at delivery, altering the expression of pregnancy complication-associated cytokines, inducing MMP7, MDK, and ESM1 and reducing BGN and CD209. Finally, COVID-19-exposed infants exhibit induction of T cell-associated cytokines (IL33, NFATC3, and CCL21), while some undergo IL-1ß/IL-18/CASP1 axis-driven neonatal respiratory distress despite birth at term. Our findings demonstrate COVID-19-induced immune rewiring in both mothers and neonates, warranting long-term clinical follow-up to mitigate potential health risks.


Asunto(s)
COVID-19/inmunología , Citocinas/sangre , Inflamación , Proteómica , Adolescente , Adulto , COVID-19/sangre , COVID-19/metabolismo , Femenino , Humanos , Recién Nacido , Madres , Embarazo , Suero/metabolismo , Adulto Joven
9.
Nano Today ; 392021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1230685

RESUMEN

Nanotoxicology and nanomedicine are two sub-disciplines of nanotechnology focusing on the phenomena, mechanisms, and engineering at the nano-bio interface. For the better part of the past three decades, these two disciplines have been largely developing independently of each other. Yet recent breakthroughs in microbiome research and the current COVID-19 pandemic demonstrate that holistic approaches are crucial for solving grand challenges in global health. Here we show the Yin and Yang relationship between the two fields by highlighting their shared goals of making safer nanomaterials, improved cellular and organism models, as well as advanced methodologies. We focus on the transferable knowledge between the two fields as nanotoxicological research is moving from pristine to functional nanomaterials, while inorganic nanomaterials - the main subjects of nanotoxicology - have become an emerging source for the development of nanomedicines. We call for a close partnership between the two fields in the new decade, to harness the full potential of nanotechnology for benefiting human health and environmental safety.

10.
Nano Today ; 39: 101161, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: covidwho-1188914

RESUMEN

The family of coronavirus are named for their crown shape. Encoded by the genetic material inherited from the coronavirus itself, this intrinsic well-known "viral corona" is considered an "inherited corona". After contact with mucosa or the entrance into the host, bare coronaviruses can become covered by a group of dissolved biomolecules to form one or multiple layers of biomolecules. The layers acquired from the surrounding environment are named the "acquired corona". We highlight here the possible role of the acquired corona in the pathogenesis of coronaviruses, which will generate fresh insight into the nature of various coronavirus-host interactions.

11.
Nat Commun ; 12(1): 2114, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1174670

RESUMEN

Lack of detailed knowledge of SARS-CoV-2 infection has been hampering the development of treatments for coronavirus disease 2019 (COVID-19). Here, we report that RNA triggers the liquid-liquid phase separation (LLPS) of the SARS-CoV-2 nucleocapsid protein, N. By analyzing all 29 proteins of SARS-CoV-2, we find that only N is predicted as an LLPS protein. We further confirm the LLPS of N during SARS-CoV-2 infection. Among the 100,849 genome variants of SARS-CoV-2 in the GISAID database, we identify that ~37% (36,941) of the genomes contain a specific trio-nucleotide polymorphism (GGG-to-AAC) in the coding sequence of N, which leads to the amino acid substitutions, R203K/G204R. Interestingly, NR203K/G204R exhibits a higher propensity to undergo LLPS and a greater effect on IFN inhibition. By screening the chemicals known to interfere with N-RNA binding in other viruses, we find that (-)-gallocatechin gallate (GCG), a polyphenol from green tea, disrupts the LLPS of N and inhibits SARS-CoV-2 replication. Thus, our study reveals that targeting N-RNA condensation with GCG could be a potential treatment for COVID-19.


Asunto(s)
Sustitución de Aminoácidos/efectos de los fármacos , COVID-19/prevención & control , Catequina/análogos & derivados , Proteínas de la Nucleocápside/genética , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , COVID-19/virología , Catequina/farmacología , Genoma Viral/genética , Humanos , Extracción Líquido-Líquido , Proteínas de la Nucleocápside/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , SARS-CoV-2/genética , Replicación Viral/genética
12.
Proc Natl Acad Sci U S A ; 117(45): 28336-28343, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: covidwho-882991

RESUMEN

Coronavirus disease 2019 (COVID-19), the global pandemic caused by SARS-CoV-2, has resulted thus far in greater than 933,000 deaths worldwide; yet disease pathogenesis remains unclear. Clinical and immunological features of patients with COVID-19 have highlighted a potential role for changes in immune activity in regulating disease severity. However, little is known about the responses in human lung tissue, the primary site of infection. Here we show that pathways related to neutrophil activation and pulmonary fibrosis are among the major up-regulated transcriptional signatures in lung tissue obtained from patients who died of COVID-19 in Wuhan, China. Strikingly, the viral burden was low in all samples, which suggests that the patient deaths may be related to the host response rather than an active fulminant infection. Examination of the colonic transcriptome of these patients suggested that SARS-CoV-2 impacted host responses even at a site with no obvious pathogenesis. Further proteomics analysis validated our transcriptome findings and identified several key proteins, such as the SARS-CoV-2 entry-associated protease cathepsins B and L and the inflammatory response modulator S100A8/A9, that are highly expressed in fatal cases, revealing potential drug targets for COVID-19.


Asunto(s)
COVID-19/metabolismo , Proteoma/metabolismo , Transcriptoma , Anciano , Anciano de 80 o más Años , COVID-19/genética , COVID-19/inmunología , COVID-19/patología , Colon/metabolismo , Resultado Fatal , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Masculino , Persona de Mediana Edad , Activación Neutrófila , Proteoma/genética , SARS-CoV-2/patogenicidad , Carga Viral
13.
Med Sci Monit ; 26: e924582, 2020 Jul 12.
Artículo en Inglés | MEDLINE | ID: covidwho-641223

RESUMEN

In December 2019, an outbreak of coronavirus infection emerged in Wuhan, Hubei Province of China, which is now named Coronavirus Disease 2019 (COVID-19). The outbreak spread rapidly within mainland China and globally. This paper reviews the different imaging modalities used in the diagnosis and treatment process of COVID-19, such as chest radiography, computerized tomography (CT) scan, ultrasound examination, and positron emission tomography (PET/CT) scan. A chest radiograph is not recommended as a first-line imaging modality for COVID-19 infection due to its lack of sensitivity, especially in the early stages of infection. Chest CT imaging is reported to be a more reliable, rapid, and practical method for diagnosis of COVID-19, and it can assess the severity of the disease and follow up the disease time course. Ultrasound, on the other hand, is portable and involves no radiation, and thus can be used in critically ill patients to assess cardiorespiratory function, guide mechanical ventilation, and identify the presence of deep venous thrombosis and secondary pulmonary thromboembolism. Supplementary information can be provided by PET/CT. In the absence of vaccines and treatments for COVID-19, prompt diagnosis and appropriate treatment are essential. Therefore, it is important to exploit the advantages of different imaging modalities in the fight against COVID-19.


Asunto(s)
Betacoronavirus , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico por imagen , Pandemias , Neumonía Viral/diagnóstico por imagen , Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , China/epidemiología , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Diagnóstico Diferencial , Progresión de la Enfermedad , Estudios de Seguimiento , Humanos , Pulmón/diagnóstico por imagen , Pulmón/patología , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Enfermedades Pulmonares Intersticiales/etiología , Neumonía/diagnóstico por imagen , Neumonía Viral/complicaciones , Neumonía Viral/epidemiología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiografía Torácica , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/etiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA